A Simple Stochastic Algorithm for Structural Features Learning

نویسندگان

  • Jan Macák
  • Ondrej Drbohlav
چکیده

A conceptually very simple unsupervised algorithm for learning structure in the form of a hierarchical probabilistic model is described in this paper. The proposed probabilistic model can easily work with any type of image primitives such as edge segments, non-max-suppressed filter set responses, texels, distinct image regions, SIFT features, etc., and is even capable of modelling non-rigid and/or visually variable objects. The model has recursive form and consists of sets of simple and gradually growing sub-models that are shared and learned individually in layers. The proposed probabilistic framework enables to exactly compute the probability of presence of a certain model, regardless on which layer it actually is. All these learned models constitute a rich set of independent structure elements of variable complexity that can be used as features in various recognition tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

EVALUATING EFFICIENCY OF BIG-BANG BIG-CRUNCH ALGORITHM IN BENCHMARK ENGINEERING OPTIMIZATION PROBLEMS

Engineering optimization needs easy-to-use and efficient optimization tools that can be employed for practical purposes. In this context, stochastic search techniques have good reputation and wide acceptability as being powerful tools for solving complex engineering optimization problems. However, increased complexity of some metaheuristic algorithms sometimes makes it difficult for engineers t...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Simulation and Prediction of Wind Speeds: A Neural Network for Weibull

Abstract. Wind as a resource of renewable energy has obtained an important share of the energy market already. Therefore simulation and prediction of wind speeds is essential for both, for engineers and energy traders. In this paper we analyze the surface wind speed data from three prototypic locations: coastal region (Rotterdam), undulating forest landscape few 100 m above sea level(Kassel), ...

متن کامل

A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses

In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014